Exercise 66

By the end behavior of a function we mean the behavior of its values as $x \rightarrow \infty$ and as $x \rightarrow-\infty$.
(a) Describe and compare the end behavior of the functions

$$
P(x)=3 x^{5}-5 x^{3}+2 x \quad Q(x)=3 x^{5}
$$

by graphing both functions in the viewing rectangles $[-2,2]$ by $[-2,2]$ and $[-10,10]$ by [$-10,000,10,000]$.
(b) Two functions are said to have the same end behavior if their ratio approaches 1 as $x \rightarrow \infty$. Show that P and Q have the same end behavior.

Solution

Below is a plot of both functions versus x on the different viewing windows.

Both the functions tend to $-\infty$ as $x \rightarrow-\infty$, and both the functions tend to ∞ as $x \rightarrow \infty$; in addition, as $|x|$ becomes large the functions appear to be parallel lines, which indicates they have the same end behavior. Calculate the limit of their ratio as $x \rightarrow \pm \infty$. In the second limit, make the substitution, $u=-x$, so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)} & =\lim _{x \rightarrow \infty} \frac{3 x^{5}-5 x^{3}+2 x}{3 x^{5}}=\lim _{x \rightarrow \infty}\left(1-\frac{5}{3 x^{2}}+\frac{2}{3 x^{4}}\right)=1-0+0=1 \\
\lim _{x \rightarrow-\infty} \frac{P(x)}{Q(x)} & =\lim _{u \rightarrow \infty} \frac{3(-u)^{5}-5(-u)^{3}+2(-u)}{3(-u)^{5}} \\
& =\lim _{u \rightarrow \infty} \frac{-3 u^{5}+5 u^{3}-2 u}{-3 u^{5}} \\
& =\lim _{u \rightarrow \infty}\left(1-\frac{5}{3 u^{2}}+\frac{2}{3 u^{4}}\right) \\
& =1-0+0 \\
& =1
\end{aligned}
$$

